If it's not what You are looking for type in the equation solver your own equation and let us solve it.
14x^2+90x+100=0
a = 14; b = 90; c = +100;
Δ = b2-4ac
Δ = 902-4·14·100
Δ = 2500
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{2500}=50$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(90)-50}{2*14}=\frac{-140}{28} =-5 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(90)+50}{2*14}=\frac{-40}{28} =-1+3/7 $
| 55+8.50(x)=123 | | 2x+53=5x+2+90 | | 9x-1=10+4x | | 9^x=300 | | n/4-5=13 | | -3e+12=9 | | 1x+31=101 | | (2x)=(5x-6) | | 180=2x+51 | | 5x+6=-(2x+13) | | 8x=10=9x | | 5^(2x-3)=4 | | 2x14=-9 | | x/2-17=5 | | 19x-5=15x-1 | | 14x=9-2x | | 199.20=6(0.08m+24.80+0.10(24.80) | | 0.04(2r+2)-0.03(2r-5)=0.29 | | q=6+2q=18 | | 3x^2+5=103 | | q=8q=24 | | 5m+2(m+5)=7 | | 4^3x+2=16^x-4/2x | | 3y+5=y-9 | | 11x-39=77 | | 17w-13=15w | | 1.2=20.4-6v | | 1.5^m=2 | | 10w-43=7w | | 231=-u+80 | | -w+261=79 | | 167-w=13 |